На правах рукописи

M

Лебедева Елена Александровна

РОЛЬ ТОКОВ ИОНОВ НАТРИЯ В МОРФОЛОГИИ ПОТЕНЦИАЛОВ ДЕЙСТВИЯ КЛЕТОК СИНУСНО–ПРЕДСЕРДНОГО УЗЛА У МЫШИ И КРОЛИКА

03.03.01 - физиология

Автореферат диссертации на соискание ученой степени кандидата биологических наук

Сыктывкар 2016

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физиологии Коми научного центра Уральского отделения Российской академии наук

Научный руководитель:	доктор биологических наук, старший научный сотрудник, Головко Владимир Александрович			
Официальные оппоненты:	Загидуллин Науфаль Шамилевич доктор медицинских наук, доцент Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Башкирский государственный университет» Минздрава России, кафедра пропедевтики внутренних болезней, профессор			
	Лопатина Екатерина Валентиновна доктор биологических наук, Федеральное государственное бюджетное учреждение Северо-Западный федеральный медицинский исследовательский центр имени В. А. Алмазова Министерства здравоохранения Российской Федерации, научно-исследовательский отдел экспериментальной физиологии и фармакологии, ведущий научный сотрудник			
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт- Петербургский государственный университет»			

Защита состоится « 8 » июня 2016 г. в 10:00 часов на заседании диссертационного совета Д 004.017.02 на базе Федерального государственного бюджетного учреждения науки Института физиологии Коми научного центра Уральского отделения Российской академии наук по адресу: 167982, Сыктывкар, ГСП-2, ул. Первомайская 50, nivarlam@physiol.komisc.ru.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Института физиологии Коми научного центра Уральского отделения Российской академии наук по адресу: Сыктывкар, ул. Первомайская 50 и на сайте http://www.physiol.komisc.ru.

Автореферат разослан «___» ____2016 г.

Ученый секретарь диссертационного совета –

Bef

Варламова Нина Геннадьевна

ВВЕДЕНИЕ

Актуальность темы. Изучение вклада отдельных ионных токов в формирование потенциалов действия клеток, работающих в режиме водителя ритма, составляет важное направление исследований в электрофизиологии. Нарушение функции синусно-предсердного (СП) узла сопряжено с риском развития многих видов аритмий и жизнеугрожающих состояний, в том числе синдрома внезапной смерти [Полякова и др., 2008]. В последнее десятилетие исследования в области молекулярной биологии и генетики способствуют разработке подходов к созданию биологических пейсмекеров как альтернативы или дополнения к методу электрокардиостимуляции [Rosen et al., 2011]. Для решения этих проблем требуются более точные знания о механизмах формирования спонтанных импульсов [Dobrzynski et al., 2007; Zhang et al., 2010; Verkerk, Wilders, 2013].

синусно-предсердной области сердца Клетки неоднородны по своим электрофизиологическим свойствам. Их функциональная гетерогенность обусловлена различной экспрессией каналов на сарколемме для ионов натрия, кальция и калия. Полагают, что у клеток имеющих скорость фазы 0 потенциалов действия (ПД) свыше 20 В/с существенный вклад в формирование фазы быстрой деполяризации ПД (фаза 0) вносит чувствительный к тетродотоксину (TTX) Na⁺-ток (I_{Na}) [Baruscotti et al., 1996; Kodama et al., 1997]. Вопрос о роли ионов натрия в генерации фазы 0 у клеток с медленной $dV/dt_{max} \le 5$ B/c до сих пор остается предметом дискуссий. Считается, что у клеток с самой медленной скоростью нарастания ПД в фазу 0 натриевый ток инактивирован или пренебрежительно мал и ведущая роль принадлежит Ca²⁺-току L-типа [Kodama, et al. 1997; Satoh, 2003; Kurata et al., 2008; Mangoni, Nargeot, 2008; Maltsev, Lakatta, 2009]. Однако в литературе имеются сведения о возможном участии I_{Na} в формировании фазы быстрой деполяризации [Головко, 2009; Verkerk et al., 2009]. В области СП узла сердца мыши, кролика и человека выявлена экспрессия двух изоформ Na⁺-каналов: Na_v1.1 и Na_v1.5 [Maier et al., 2003; Lei et al., 2004; Marionneau et al., 2005; Chandler et al., 2009]. У пациентов с синдромом слабости СП узла обнаружены мутации в генах SCN5A, кодирующих порообразующую субъединицу изоформы Na_v1.5 [Lei et al., 2007; Butters et al., 2010].

Поддержание гомеостаза K⁺, Na⁺ и Ca²⁺ в клетках является необходимым условием ритмичной генерации потенциалов действия сердца. Нарушение концентрации ионов натрия в плазме крови может существенно повлиять на электрическую активность клеток. Na⁺/K⁺–насос играет ключевую роль в поддержании гомеостаза ионов натрия и калия в клетке. В результате работы Na⁺/K⁺–насоса возникает направленный наружу гиперполяризующий ток [Болдырев, 1998, 2008; Sakai et al., 1996]. Сердечные гликозиды представляют собой класс лекарственных соединений, способных ингибировать работу Na⁺/K⁺–насоса. Однако экспериментальные данные о влиянии сердечных гликозидов на спонтанную активность клеток водителя ритма единичны, функциональная роль тока Na⁺/K⁺–насоса в поддержании автоматизма остается до конца невыясненной и оценка вклада Na⁺/K⁺–АТФазы в морфологию ПД остается важной задачей.

К настоящему времени наиболее полно исследована электрофизиология клеток СП узла кролика [Denyer, Brown, 1990; Baruscotti et al., 1996; Kodama et al., 1997; Maltsev et al., 2004; DiFrancesco, 2010]. В последние годы все чаще проводят исследования на генетически модифицированных мышах [Lei et al., 2005; Liu et al., 2007; Pott et al., 2007]. Синусно-предсердный узел мыши благодаря генетической близости. сходству организации и функционирования с синусно-предсердным узлом человека на данный момент является распространенной экспериментальной моделью для решения актуальных проблем в электрофизиологии сердца. В отличие от кролика, СП узел мыши имеет небольшие размеры и окружен слоем соединительной ткани, что существенно усложняет исследования с помощью микроэлектродной техники. Остается актуальным вопрос насколько близки механизмы формирования автоматизма у клеток СП узла мыши и кролика – наиболее часто используемых экспериментальных животных.

Теоретическое и практическое значение работы. Полученные результаты вносят вклад в понимание физиологической роли токов ионов Na⁺ в механизмах генерации и регуляции автоматизма пейсмекерных клеток СП узла. Это важно для выявления причин формирования патологий, связанных с нарушениями электрической активности клеток водителя ритма. Выяснение механизмов автоматизма СП узла будет содействовать разработке способов направленного фармакологического регулирования активности клеток, работающих в режиме водителя ритма в синусно-предсердном узле.

Данная работа создает фундамент для развития и усовершенствования математических моделей генерации ПД с учетом электрической неоднородности клеток СП узла. Исследование основных токов, особенно с участием ионов натрия, в генерации и регуляции автоматизма СП узла сердца имеет большое практическое значение в биомедицине для создания биологических пейсмекеров, необходимых для пациентов с дисфункцией СП узла.

Научная новизна исследования. Впервые с помощью микроэлектродной техники получены данные, свидетельствующие об участии Na⁺-тока в формировании ПД у клеток водителя ритма СП узла мыши с самой медленной скоростью нарастания переднего фронта ПД (~ 3 В/с) в условиях, близких к физиологическим. Доказано, что входящий Na⁺-ток, чувствительный к ТТХ и лидокаину, вносит вклад в формирование фазы быстрой деполяризации и фазы медленной диастолической деполяризации потенциалов действия.

При сопоставимой скорости нарастания ПД в фазу 0, проведена оценка относительного вклада токов чувствительных к лидокаину (I_{Na}) и нифедипину (I_{CaL}) в формировании фаз ПД у клеток типа истинного и скрытого водителя ритма СП узла мыши и кролика. Впервые у клеток водителя ритма СП узла мыши и кролика выявлены различия в чувствительности к лидокаину – блокатору потенциалзависимых Na⁺-каналов. На основании анализа дозозависимых кривых изменения скорости фазы быстрой деполяризации определена эффективная концентрация лидокаина, при которой достигается 50% ингибирующий эффект (EC₅₀). Показано, что у клеток водителя ритма мыши и кролика имеют различную чувствительность к нифедипину. Скорость фазы быстрой деполяризации ПД у клеток истинного водителя ритма кролика в два раза чувствительнее к ингибитору медленного Ca²⁺-тока L-типа, чем у клеток мыши.

В синусно-предсердном узле мыши у клеток, работающих в режиме истинного и скрытого водителей ритма, снижение скорости нарастания переднего фронта ПД в фазу 0 (dV/dt_{max}) происходит пропорционально снижению транссарколеммального градиента Na⁺.

Получены новые данные о физиологической роли тока Na^+/K^+ -насоса (I_{NaK}), участвующего в автоматизме клеток СП узла мыши и кролика. При ингибировании Na^+/K^+ -насоса уабаином установлено, что препараты СП узла мыши в ~ 10 раз устойчивее к этому блокатору по сравнению с препаратами СП узла кролика.

Цель и задачи исследования. Цель работы заключалась в исследовании роли токов с участием ионов натрия в формировании трансмембранных потенциалов действия клеток синусно-предсердного узла у мыши и кролика.

Для достижения цели поставлены следующие задачи:

1. На основе результатов ингибиторного анализа оценить вклад входящего Na⁺– тока в генерацию потенциалов действия СП узла у мыши и кролика.

2. Изучить и проанализировать эффекты нифедипина – блокатора медленного Ca²⁺– тока L-типа на основные электрофизиологические параметры ПД клеток СП области у мыши и кролика.

3. Охарактеризовать эффекты растворов с пониженным содержанием ионов натрия на формирование ПД клеток водителя ритма мыши.

4. Оценить влияние уабаина, как блокатора Na⁺/K⁺-насоса, на электрическую активность клеток СП узла мыши и кролика.

Положения, выносимые на защиту:

1. В формировании фазы быстрой деполяризации ПД клеток типа истинного водителя ритма СП узла мыши с самой медленной dV/dt_{max} участвует Na^+ -ток, чувствительный к TTX и лидокаину.

2. Клетки СП узла мыши и кролика имеют различную чувствительность к действию лидокаина – блокатору Na⁺–каналов.

3. Скорость фазы быстрой деполяризации (dV/dt_{max}) клеток водителя ритма СП узла у мыши замедляется пропорционально снижению внеклеточной концентрации ионов Na⁺.

4. При ингибировании Na⁺/K⁺-насоса установлено, что многоклеточные препараты СП узла мыши в ~ 10 раз устойчивее к уабаину по сравнению с препаратами СП узла кролика.

Апробация диссертации. Материалы работы были представлены на X – XIII молодежных научных конференциях Института физиологии Коми научного центра Уральского отделения РАН «Физиология человека и животных от эксперимента к клинической практике» (Сыктывкар, 2011–2014), XXX Annual Meeting of the European Section of the Internationat Society of Heart research (Хайфа, Израиль, 2011), V –VI Всероссийских с международным участием школах–конференциях «Физиология кровообращения» (Москва, 2012, 2016), IV Съезде биофизиков России, (Н. Новгород, 2012), Cardiac & Respiratory Physiology Themed Meeting of Royal Physiological Society (Манчестер, 2012), 37th World Congress of the International Union of Physiological Sciences (Бирмингем, 2013).

Личное участие автора в получении результатов. Все экспериментальные процедуры и обработка полученных результатов выполнены автором лично. Материалы, вошедшие в представленную работу, обсуждались и публиковались лично и совместно с научным руководителем. По материалам диссертации опубликованы четыре статьи в журналах, рекомендованных ВАК, и десять тезисов.

Легитимность исследования. Экспериментальный протокол был одобрен независимым Комитетом по биоэтике Института физиологии Коми НЦ УрО РАН (заключение от 24 декабря 2009 г.) и соответствовал международными правилам «Для использования лабораторных животных» (Guide for the Care and Use of Laboratory Animals, 8-е издание, опубликованное National Academies Press (US) 2011 г.).

Структура и объем диссертации. Диссертация изложена на 126 машинописных страницах, состоит из введения, четырех глав (обзор литературы, материалы и методы исследования, результаты исследования и обсуждение результатов), заключения, выводов и списка литературы (171 источников). Диссертация содержит 13 таблиц и 26 рисунков.

Работа выполнена в лаборатории физиологии сердца Института физиологии Коми НЦ УрО РАН в период прохождения курса аспирантуры (2009–2012 гг.) и является разделом плановой темы НИР «Механизм формирования функциональной электрической гетерогенности миокарда» (№ ГР 02.200 950623), поддержана грантами Президиума УрО РАН (проекты № 12–П–4–1054 и 12–У–4–8–1022) и Российского фонда фундаментальных исследований (проекты № 09-04-98812 р_север_а).

СОДЕРЖАНИЕ РАБОТЫ

Глава 1. ОБЗОР ЛИТЕРАТУРЫ

Приведены и проанализированы данные по электрофизиологии СП узла млекопитающих. Подробно рассмотрены морфология СП узла и ионные механизмы автоматизма клеток водителя ритма. Особое внимание уделено сведениям об ионных токах: входящему Na⁺–току (I_{Na}), выходящему току Na⁺/K⁺–насоса (I_{NaK}), току, активируемому гиперполяризацией (I_f), поддерживаемому (sustained) току (I_{st}), току Na⁺/Ca²⁺–обменного механизма (I_{NCX}) и Ca²⁺–токам L–типа (I_{CaL}) и T–типа (I_{CaT}). Каждый раздел завершается постановкой задач, которые решаются в процессе данного исследования.

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объект исследования

Эксперименты проводили на самцах мышей альбиносов (возраст 8–10 недель, масса тела 30±5 г, n_{препаратов}=30), и кроликах обоих полов породы Шиншилла (возраст 6–7 месяцев, масса тела 3.0-3.5 КΓ, n_{препаратов}=12), полученных из питомника экспериментальных животных Института биологии Коми НЦ УрО РАН (г. Сыктывкар). Животных обездвиживали введением золетила (кролики, 15 мг/кг массы тела) и путем мгновенного смещения шейных позвонков (мыши). После вскрытия грудной клетки сердце извлекали и помещали в чашку Петри с контрольным раствором Тироде (31±1°С) следующего состава (мМ/л): NaCl 140, NaHCO₃ 10 мМ, KCl 5.4, CaCl₂ 1.8, MgSO₄ 1, глюкоза 10, HEPES 5; pH раствора доводили до 7.4 добавлением NaOH или HCl и насыщали газовой смесью 95% О2 и 5% СО2. После идентификации нижней и верхней полых вен, сердце закрепляли на подложке в чашке Петри, удаляли желудочки, левое предсердие, вскрывали правое предсердие. Полученный препарат размером 3 мм × 2 мм × 0.3 мм включал в себя СП узел, фрагмент crista terminalis (поперечный гребешок) и сегменты верхней и нижней полых вен. У кролика препарат СП узла дополнительно разрезали на 2 спонтанно сокращающиеся полоски. Препарат помещали В экспериментальную камеру (объем 6 мл). Потенциалы действия (ПД) регистрировали со стороны субэндокарда вдоль артерии СП узла в центре между верхней и нижней полыми венами [Головко, 2009; Гонотков, Головко, 2011].

Регистрация потенциалов действия

Регистрацию биопотенциалов проводили с помощью стандартной микроэлектродной техники [Крастс, 1975]. Использовали стеклянные микроэлектроды, заполненные 2.5 моль/л KCl с начальным сопротивлением 50–60 MΩ. Рабочий диапазон усилителя «Electro 705» («World Precision Instruments», США) составлял от 0 до 5 кГц. Потенциалы действия записывали через аналого-цифровой преобразователь, тип Е14-140 (L-CARD, Россия) на жесткий диск компьютера. Анализировали следующие показатели ПД: амплитуда ПД (АПД), максимальный диастолический потенциал (E_{max}), овершут (ОВ), потенциал порога (ПП), амплитуда спонтанной деполяризации (СД), длительность пика на уровне 20% (ДПД₂₀), 50% (ДПД₅₀), 90% (ДПД₉₀) и 100% (ДПД₁₀₀) реполяризации, длительность медленной диастолической деполяризации (МДД), частота генерации ПД (ЧСС), максимальная скорость нарастания ПД в фазу 0 (dV/dt_{max}) и скорость фазы медленной диастолической деполяризации (V₄). Границы между отдельными фазами устанавливали графически с помощью тангенциальных кривых, что позволяло однозначно разделять и характеризовать фазы ПД. Данные приведены как среднее арифметическое ± стандартное отклонение (M±o). Значимость различий определяли по U- критерию Манна-Уитни и критерию Вилкоксона. Различия считали значимыми при p<0.05.

Глава 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Общая характеристика электрофизиологических параметров ПД синуснопредсердной области

Характеристика ПД клеток СП области мыши. Частота генерации ПД многоклеточных препаратов СП области мыши в контрольном растворе составила ~300 имп/мин. В зависимости от места регистрации ПД клеток водителя ритма мыши различались по своей конфигурации и скорости фазы быстрой деполяризации (dV/dt_{max}). В зависимости от электрофизиологических характеристик ПД и места регистрации, клетки СП узла мыши были условно разделены на три типа: 1) работающие в режиме истинного водителя ритма (dV/dt_{max}< 8 B/c, в среднем 3.0 ± 1.5 B/c), 2) клетки типа скрытого водителя ритма (dV/dt_{max} > 9 B/c, в среднем 26 ± 13.6 B/c) и 3) клетки сократительного миокарда предсердий (dV/dt_{max}= 152 ± 28 B/c) (табл. 1.).

Характеристика ПД клеток СП узла кролика. Частота генерации ПД полосок СП узла кролика составила ~110 имп/мин, что почти в три раза медленнее, чем у мыши (табл.

1.). По аналогии с клетками водителя ритма мыши, клетки СП узла кролика были разделены на два типа. Потенциалы действия клеток типа истинного водителя ритма (ИВР) имели скорость фазы быстрой деполяризации от 2 до 8 В/с (в среднем 5.1 ± 2.2 В/с). Потенциалы действия с более отрицательным E_{max} , более высокой амплитудой ПД и dV/dt_{max} от 9 до 40 B/c (в среднем 25.5 ± 11.6 B/c) идентифицировали как ПД клеток, работающих в режиме скрытого водителя ритма (CBP).

Скорость фазы быстрой деполяризации, характеризующая входящий суммарный ток, у клеток мыши и кролика имела сопоставимые величины. При обработке экспериментальных данных, эффекты блокаторов на клетки ИВР и СВР анализировались отдельно, чтобы установить возможные различия.

Таблица 1

Параметры ПД	Клетки СП области мыши			Клетки СП области кролика	
	Истинный водитель ритма n=30	Скрытый водитель ритма n=30	Клетки рабочего миокарда n=22	Истинный водитель ритма n=12	Скрытый водитель ритма n=12
E _{max} , мВ	-59±8	-63±13	-	-64±5*	-73±5
ОВ, мВ	_	-	19±8	9±6	10±6
АПД, мВ	43±5**	55±7	96±7**	68±5*	81±7
СД, мВ	7±2	6±3	-	12±5	11±4
ПП, мВ	-53±8	-57±13	-77±6**	-53±7*	-62±8
ДПД ₂₀ ,мс	50±11**	26±11	6±1**	110±21	104±17
ДПД ₅₀ ,мс	66±12**	49±11	14±5**	156±23	147±17
ДПД ₉₀ , мс	95±15**	85±23	54±13**	215±32	199±27
ДПД ₁₀₀ , мс	127±20	122±23	103±19	275±41	258±35
ЧСС, имп/мин	295±28	292±34	305±27	108±10	116±18
МДД, мс	80±18	86±18	-	283±43	281±65
dV/dt _{max} , B/c	3.0±1.5** (1.5÷7)	26±13.6 (11÷50)	152±28** (100÷200)	5.1±2.2** (2÷8)	24±8 (9÷40)
V ₄ , мВ/с	85±21*	67±20	_	42±14	39±8

Электрофизиологические характеристики ПД клеток СП области сердца у мыши и кролика

Примечание. Е_{тах} максимальный диастолический потенциал; ОВ – овершут; АПД – амплитуда ПД: СД – амплитуда спонтанной деполяризации; ПП – потенциал порога; ДПД₂₀, ДПД₅₀, ДПД₉₀ и ДПД₁₀₀ – длительность потенциала действия на уровне 20%, 50%, 90% и 100% реполяризации; ЧСС – частота генерации ПД; МДД – длительность медленной диастолической деполяризации; dV/dt_{max} – скорость фазы быстрой деполяризации; V₄ – скорость медленной диастолической деполяризации. * – p<0.05 и ** – p<0.01, достоверность различий по сравнению с клетками, работающими в режиме скрытого водителя ритма у мыши и кролика, соответственно.

Изменение морфологии ПД при блокировании входящего Na⁺-тока, I_{Na}

Для проверки гипотезы о возможном вкладе входящего Na⁺-тока в автоматизм клеток водителя ритма СП узла были изучены эффекты специфических блокаторов Na⁺-каналов (лидокаин, TTX) на величину dV/dt_{max} – показателя суммарного входящего тока во время фазы быстрой деполяризации. Одновременно анализировали влияние блокаторов на основные параметры ПД.

Эффекты TTX на генерацию ПД клеток у мыши. TTX (25 мкМ, n=3) у клеток типа ИВР вызывал снижение амплитуды ПД на 27%, замедление dV/dt_{max} на 50%, увеличение длительности фазы медленной диастолической деполяризации (МДД) на 72% и снижение ее скорости на 55%. Частота генерации ПД замедлялась на 30% (рис. 1, 6). У клеток, работающих в режиме CBP, TTX (25 мкМ, n=3) снижал амплитуду ПД на 55% и замедлял dV/dt_{max} на 87%. Длительность МДД увеличивалась в два раза, а ее скорость замедлялась на 62%, что приводило к снижению частоты генерации ПД на 29%.

Таким образом, оба типа пейсмекерных клеток СП узла мыши проявляли высокую чувствительность к ТТХ. При этом скорость фазы быстрой деполяризации клеток типа

СВР в присутствии блокатора замедлялась сильнее, чем у клеток типа ИВР. Частота генерации ПД у обоих типов пейсмекерных клеток снижалась на треть за счет увеличения длительности МДД.

Эффекты лидокаина на ПД клеток водителя ритма у мыши. Исследовано влияние лидокаина на основные электрофизиологические характеристики ПД в диапазоне концентраций от 12 до 1000 мкМ.

У клеток типа ИВР лидокаин (25 мкМ, n=5) приводил к замедлению dV/dt_{max} от 2.6±0.8 до 1.4±0.3 В/с (на 46%). Зарегистрировано увеличение ДПД₂₀ на 52% и ДПД₉₀ – на 27%, в результате чего частота генерации ПД замедлялась на 17%. Увеличение концентрации лидокаина до 50 мкМ (n=6) приводило к дальнейшему снижению dV/dt_{max} от 2.6±0.8 до 1±0.2 В/с (на 62%). Длительность фазы МДД увеличивалась от 70±22 до 101±19 мс (на 42%), а ее скорость замедлялась от 73±26 до 59±18 мВ/с (на 20%). При этом частота генерации ПД снижалась на 23% (рис. 1, 6).

Рис.1. Изменение конфигурации ПД и скорости нарастания переднего фронта ПД в фазу 0 (dV/dt_{max}) клеток типа ИВР у препаратов СП узла мыши при экспозиции TTX (A) и лидокаина (Б) [Головко, Лебедева, 2013; Golovko, Gonotkov, Lebedeva. 2015]

У клеток типа CBP лидокаин (25 мкМ, n=5) приводил к снижению dV/dt_{max} на 59%. Длительность фазы МДД увеличилась от 89±15 до 121±12 мс (на 36%), V₄ замедлялась от 63±15 до 46±12 мB/с (на 27%), а частота генерации ПД снижалась на 24%. Лидокаин в концентрации 50 мкМ (n=6) вызывал снижение амплитуды ПД на 20% и dV/dt_{max} – на 77%. Зафиксировано увеличение ДПД₂₀ в два раза (от 27±8 до 53±13 мс) и ДПД₉₀ – на 46% (от 70±11 до 102±15 мс). Фаза МДД изменялась так же, как при действии на клетки 25 мкМ лидокаина. В результате чего частота генерации ПД снижалась на 30%.

Построенная по результатам экспериментов кривая зависимости dV/dt_{max} от концентрации лидокаина соответствовала уравнению Хилла (рис. 2). Пороговая концентрация лидокаина для dV/dt_{max} у клеток ИВР составила ~ 20 мкМ, тогда как концентрация, при которой данный параметр снижался на 50% (ЕС₅₀) оказалась равной ~ 35 мкМ. Для клеток, работающих в режиме СВР, пороговая концентрация лидокаина составила ~10 мкМ, а концентрация $EC_{50} - ~20$ мкМ. Прекращение электрической активности у препаратов СП узла мыши зарегистрировано при 1 мМ лидокаина. Эффекты лидокаина на dV/dt_{max} выражены сильнее (в 1.7 раза) у клеток типа CBP по сравнению с клетками типа ИВР. На остальные параметры ПД у обоих типов клеток водителя ритма лидокаин оказывал идентичные эффекты [Головко, Лебедева, 2013].

Таким образом, экспериментальные данные свидетельствуют о высокой чувствительности клеток водителя ритма СП узла мыши к ТТХ и лидокаину. Эффекты блокаторов на dV/dt_{max}, характеризующую суммарный выходящий ток во время фазы 0,

идентичны. Эти результаты позволяют заключить, что входящий Na⁺-ток вносит заметный вклад в формирование фазы быстрой деполяризации ПД у клеток типа истинного и скрытого водителя ритма мыши.

Рис. 2. Блокирование скорости фазы быстрой деполяризации (dV/dt_{max}) ПД клеток типа ИВР и СВР в СП узле мыши и пейсмекерных клеток кролика в зависимости от концентрации лидокаина. Сплошные линии соответствуют значениям, вычисленным по уравнению Хилла. Значения приведены как М±σ; * – достоверность различий по сравнению с контролем (*p*<0.05).

Эффекты лидокаина на морфологию ПД клеток СП узла у кролика. Для оценки роли Na⁺-тока у клеток водителя ритма кролика применяли экспериментальный протокол, используемый для препаратов СП узла мыши. Скорость фазы быстрой деполяризации у клеток, предположительно функционирующих в режиме ИВР, в контроле составила ~ 7 В/с.

Лидокаин в концентрации 25 и 50 мкМ не оказывал влияния на параметры ПД. Повышение концентрации лидокаина до 100 мкМ (n=4) вызывало снижение dV/dt_{max} от 7±1 до 5.7±0.6 В/с (на 20%). Остальные параметры ПД достоверно не изменялись.

Повышение лидокаин от 100 до 500 мкМ (n=5) приводило к смещению максимального диастолического потенциала E_{max} в сторону деполяризации (от -67±10 до -54±4 мВ), снижению АПД на 14% и замедлению dV/dt_{max} от 6.9±1.3 до 3.0±1.7 В/с (на 57%). Длительность ПД на уровне 20 и 90% реполяризации увеличивалась на 30% и 51% соответственно. Скорость фазы МДД замедлялась на 21% за счет снижения амплитуды спонтанной деполяризации. Частота генерации ПД замедлялась на 15% (рис. 3). При 1 мМ лидокаина на 6–8 мин экспозиции происходило прекращение генерации ПД в результате блокирования фазы быстрой деполяризации.

Анализ кривой зависимости dV/dt_{max} от концентрации лидокаина (рис. 2) показал, что пороговая концентрация блокатора для dV/dt_{max} составила ~ 100 мкМ, а концентрация EC₅₀ – 220 мкМ. Сопоставление результатов, полученных на клетках водителя ритма у мыши и кролика, показало, что пейсмекерные клетки СП узла кролика (dV/dt_{max}= 7 B/c) устойчивее (~ 8 раз) к действию лидокаина, чем клетки типа истинного (dV/dt_{max}= 3 B/c) и скрытого (dV/dt_{max}= 15 B/c) водителя ритма СП узла мыши. У обоих видов животных лидокаин замедлял скорость фазы МДД на 20–30%. У клеток СП узла мыши замедление V₄ происходило за счет увеличения длительности МДД (на 30–40%), у кролика – за счет снижения амплитуды спонтанной деполяризации (на ~30%).

Рис. 3. Изменение конфигурации ПД клеток водителя ритма СП узла кролика при экспозиции лидокаина (500 мкМ). А – ПД клеток и первая производная (dV/dt_{max}) в контрольном растворе и при добавлении лидокаина. Б – запись ПД при развернутой временной шкале.

Таким образом, полученные результаты свидетельствуют, что у пейсмекерных клеток СП узла мыши и кролика существует Na⁺-ток, участвующий в формировании фазы быстрой деполяризации и фазы медленной диастолической деполяризации. Установлено, что dV/dt_{max} пейсмекерных клеток СП узла кролика в 8 раз устойчивее к лидокаину, чем у клеток водителя ритма СП узла мыши.

Изменение морфологии ПД при блокировании Ca²⁺-тока L-типа, I_{CaL}

Для более точной оценки вклада Na⁺-тока в формирование ПД у разных типов пейсмекерных клеток, с помощью специфического блокатора Ca²⁺-каналов – нифедипина, нами был исследован вклад Ca²⁺-тока L-типа.

Эффекты нифедипина на генерацию ПД у клеток СП узла мыши. У клеток типа ИВР мыши нифедипин 0.1 мкМ (n=6) приводил к снижению амплитуды ПД на 10% и увеличению длительности ПД на уровне 20% и 100% реполяризации на 19% и 10% соответственно. Скорость фазы быстрой деполяризации снижалась на 16%. Фаза МДД удлинялась на 25%, а ее скорость замедлялась на 30%. В результате частота генерации ПД снижалась на 15%. Увеличение концентрации нифедипина от 0.1 до 0.5 мкМ (n=3) на 4–5 мин экспозиции вызывало прекращение генерации ПД. При этом наблюдали постепенное снижение амплитуды ПД и dV/dt_{max}. Следует отметить, что полной остановки электрической активности у препаратов СП области мыши не происходило и регистрировали ПД с dV/dt_{max} выше 10 В/с.

У клеток, работающих в режиме СВР, нифедипин 0.05 мкМ (n=3) вызывал замедление dV/dt_{max} на 30% и увеличение ДПД₁₀₀ на 14%. Повышение концентрации нифедипина от 0.05 до 0.10 мкМ (n=4) приводило к снижению амплитуды ПД и удлинению ДПД₁₀₀ в среднем на 20%. Скорость фазы быстрой деполяризации замедлялась от 24±10 до 13.7±7 В/с (на 43%). Нифедипин 0.5 мкМ (n=5) вызывал снижение амплитуды ПД на 35% и удлинял ДПД₁₀₀ на 26%. Скорость фазы быстрой деполяризации замедлялась от 28±10 до 14±5 В/с (на 50%). Длительность фазы МДД увеличивалась на 22%, а ее скорость снижалась на 37%. В результате чего частота генерации ПД замедлялась на 20%. При 1 мкМ нифедипина у клеток СВР наступало прекращение генерации ПД.

По результатам проведенных экспериментов для клеток типа ИВР и СВР мыши построены дозозависимые кривые, описывающие изменения dV/dt_{max} в присутствии нифедипина (рис. 4). Пороговая концентрация для клеток типа ИВР равна 0.1 мкМ, а эффективная концентрация (EC₅₀) нифедипина составила 0.2 мкМ. Пороговая концентрация нифедипина для dV/dt_{max} у клеток, работающих в режиме СВР, составила 0.03 мкМ, а концентрация EC₅₀ – 0.13 мкМ. Прекращение электрической активности у клеток, работающих в режиме ИВР, наступало при 0.5 мкМ нифедипина, тогда как клетки типа СВР продолжали генерировать ПД.

Рис. 4. Блокирование dV/dt_{max} у клеток типа ИВР и СВР синусно–предсердного узла мыши (А) и кролика (Б) в зависимости от концентрации нифедипина. Сплошные линии соответствуют значениям, вычисленным по уравнению Хилла. Значения приведены как М± σ ; * – *p*<0.05 достоверность различий по сравнению с контролем.

Таким образом, наиболее чувствительной к действию нифедипина у обоих типов пейсмекерных клеток мыши является фаза нарастания переднего фронта ПД (dV/dt_{max}). Клетки типа CBP сохраняли способность генерировать ПД в присутствии высокой концентрации нифедипина. Ингибирование генерации ПД у клеток с медленной dV/dt_{max} наступало при концентрации нифедипина равной 0.5 мкМ, у клеток с высокой dV/dt_{max} – при 1 мкМ. Полное прекращение электрической активности у препаратов СП узла мыши наступало при действии 2 мкМ нифедипина.

Эффекты нифедипина на параметры ПД клеток СП узла у кролика. Анализ полученных результатов выявил, что у клеток, работающих в режиме ИВР (dV/dt_{max} = 5.6 ± 1.8 B/c), нифедипин 0.1 мкМ (n=5) вызывал снижение амплитуды ПД от 71±6 мВ до 53 ± 14 мВ (на 25%) и увеличение длительности ДПД₂₀ на 10%. Скорость фазы быстрой деполяризации замедлялась от 5.6 ± 1.8 до 2.8 ± 1.3 B/c (на 49%). У клеток, работающих в режиме CBP (dV/dt_{max} = 24.5 ± 6.5 B/c) нифедипин (0.1 мкМ, n=3) приводил к снижению амплитуды ПД от 80 ± 2 до 72 ± 2 мВ (на 10%) и замедлению dV/dt_{max} от 24.5 ± 6.5 до 15 ± 5 (на 39%). Повышение концентрации нифедипина от 0.1 до 0.5 мкМ (n=4) приводило к подавлению электрической активности у полосок СП узла кролика на 7–10 мин экспозиции.

Рассчитанная на основании уравнения Хилла эффективная концентрация (EC₅₀) нифедипина для клеток, работающих в режиме ИВР, кролика составила ~ 0.10 мкМ, для клеток типа CBP – 0.15 мкМ (рис. 4).

Таким образом, у клеток СП узла кролика наиболее подвержены действию нифедипина амплитуда ПД и dV/dt_{max}. При этом установлено, что клетки типа ИВР чувствительнее (в 1.4 раза) к ингибированию Ca^{2+} -тока, чем клетки типа CBP. Кроме того, нифедипин (0.5 мкМ) замедлял скорость фазы 4, что свидетельствует о вкладе Ca^{2+} -тока L-типа в формирование фазы медленной диастолической деполяризации.

Влияние гипонатриевых растворов на параметры ПД клеток СП узла у мыши

Для оценки суммарного вклада Na⁺-токов в автоматизм исследованы эффекты гипонатриевых растворов на параметры ПД клеток СП узла мыши. В растворе Тироде Na⁺ заменяли на трис на 25, 50 и 70% по сравнению с контролем.

У клеток типа ИВР снижение $[Na^+]_0$ в солевом растворе в два раза (на 50%, n=8) приводило к снижению амплитуды ПД на 22% и увеличению ДПД₁₀₀ на 29%. Скорость нарастания ПД в фазу 0 замедлялась на 42% (от 2.4±0.7 до 1.4±0.4 В/с). Длительность

МДД возрастала в два раза, а V₄ снижалась на 51%, что приводило к замедлению генерации ПД на 39% по сравнению с контролем (рис. 5, 6).

У клеток типа CBP при снижении внеклеточного Na⁺ на 50% (n=5) зарегистрировано снижение амплитуды ПД от 52±7 до 35±10 мB (на 32%). Длительность ПД на уровне 20% (ДПД₂₀) и 100% (ДПД₁₀₀) реполяризации увеличивалась на 60%. Скорость нарастания переднего фронта ПД замедлялась от 17±3.6 до 4.5±4.0 В/с (на 73%). Фаза МДД увеличивалась в два раза, а ее скорость снижалась на 53%, что приводило к замедлению частоты генерации ПД на 46%.

Прекращение спонтанной активности у препаратов СП узла мыши регистрировали на 7–10 мин экспозиции в растворе с 30% $[Na^+]_0$. Это сопровождалось постепенным снижением амплитуды ПД и dV/dt_{max}. Частота генерации ПД замедлялась на 63% за счет удлинения МДД в 4 раза и замедления V₄ на 91%.

По результатам экспериментов с помощью уравнения Хилла и линейного уравнения построены кривые зависимости dV/dt_{max} от $[Na^+]_o$. Для клеток типа ИВР значение $[Na^+]_o$, при которой dV/dt_{max} снижается на 50% (EC₅₀), рассчитанное на основе уравнения Хилла и линейного уравнения составило ~ 70 мМ/л, для клеток типа CBP – 84 мМ/л (рис. 5). Анализ кривых показал, что снижение скорости нарастания переднего фронта в фазу 0 происходило пропорционально снижению трансарколеммального градиента Na⁺.

Рис. 5. Изменение электрофизиологических параметров ПД клеток водителя ритма СП узла мыши при понижении трансарколеммального градиента Na⁺. А. Изменение основных параметров ПД у клеток типа ИВР и СВР в присутствии 50 % гипонатриевого раствора. Уровень 100% соответствует контролю. *– p<0.05 достоверность различий по сравнению с контролем. Б. Снижение скорости фазы быстрой деполяризации ПД клеток, работающих в режиме ИВР и СВР, при варьировании внеклеточной концентрации Na⁺. Сплошные линии соответствуют значениям, вычисленным по уравнению Хилла, красные пунктирные линии соответствуют значениям, рассчитанным с помощью линейного уравнения. Значения приведены как М±σ.

Таким образом, клетки типа ИВР и СВР синусно-предсердного узла мыши оказались чувствительны к снижению внеклеточного Na⁺. Установлено, что dV/dt_{max} у клеток, работающих в режиме ИВР устойчивее к гипонатриевому раствору (50%), чем у клеток типа СВР. Эти данные согласуются с результатами ингибирования dV/dt_{max} блокаторами Na⁺-каналов (лидокаином, TTX), описанными в этой работе ранее.

Изменение морфологии ПД при ингибировании тока Na⁺/K⁺-насоса

Для исследования вклада тока Na^+/K^+ -насоса (I_{NaK}) в формирование ПД пейсмекерных клеток проведена серия экспериментов со специфическим блокатором Na^+/K^+ -АТФазы – уабаином.

Эффекты уабаина на генерацию ПД клеток типа истинного водителя ритма у мыши. При добавлении 1 мкМ уабаина в перфузирующий раствор наблюдали увеличение длительности ПД на уровне 20% и 90% реполяризации на 25% и 17% соответственно. Скорость фазы быстрой деполяризации замедлялась от 2.6 до 2.0 В/с (на 23%). В результате частота генерации ПД снижалась на 10% по сравнению с контролем. Повышение концентрации уабаина от 1 до 10 мкМ (n=9) вызывало замедление частоты генерации ПД на 14% за счет увеличения длительности ПД (ДПД₂₀, ДПД₉₀) и длительности фазы МДД на 20% и 25%, соответственно. Регистрировали снижение dV/dt_{max} и V₄ на 34% и 27% соответственно (рис. 6). Ингибирование генерации ПД у препаратов СП узла мыши зарегистрировано при 100 мкМ уабаина.

Эффекты уабаина на параметры ПД клеток СП узла у кролика. При добавлении в перфузирующий раствор 1 мкМ уабаина у клеток, работающих в режиме ИВР (dV/dt_{max}=4±0.9 B/c, n=3) и CBP (dV/dt_{max}=23±2 B/c, n=4), СП узла кролика зарегистрировано повышение скорости фазы быстрой деполяризации на 10–15%. Увеличение концентрации уабаина от 1 до 10 мкМ (n=5) у клеток типа CBP (dV/dt_{max}=21.2±4.6 B/c) на 1 мин экспозиции приводило к повышению величины E_{max} на 4–5 мВ. На 2–4 мин регистрировали деполяризацию сарколеммы на 18% (от –69±7 до –56±7 мВ) и снижение амплитуды ПД на 33%. Скорость фазы быстрой деполяризации замедлялась на 41%. Длительность фазы МДД укорачивалась на 26%, что приводило к увеличению частоты генерации ПД на 13%. После 5 мин регистрировали урежение генерации ПД на 28% по сравнению с 2–4 мин экспозиции уабаина и на 19% по сравнению с контролем, появление аритмий и на 7–9 мин подавление спонтанной электрической активности.

Таким образом, эффекты уабаина (10 мкМ) на генерацию ПД у кролика носили двухфазный характер: сначала фаза диастолической деполяризации укорачивалась, а затем происходило ее удлинение. На первой минуте экспозиции блокатора амплитуда ПД повышалась, далее регистрировали постепенное снижение и на 8 мин осциляторную активность величиной около 10 мВ. Уабаин (10 мкМ) замедлял скорость фазы быстрой деполяризации на 41% и 34% у кролика и мыши соответственно. Полное ингибирование генерации ПД зарегистрировано у кролика при действии 10 мкМ, у мыши – при 100 мкМ уабаина.

Глава 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведено подробное сопоставление полученных результатов с данными литературы, на основании, которого выполнена оценка функциональной роли Na⁺-тока, медленного Ca²⁺-тока L-типа и тока Na⁺/K⁺-насоса. Оценен суммарный вклад ионов Na⁺ в формирование автоматизма пейсмекерных клеток СП узла мыши. Проведена сравнительная оценка эффектов блокаторов ионных токов и выявлены видовые различия в генерации ПД у клеток водителя ритма у мыши и кролика.

ЗАКЛЮЧЕНИЕ

С помощью микроэлектродной техники с использованием специфических блокаторов ионных каналов и растворов с пониженным содержанием ионов натрия на многоклеточных препаратах СП узла у мыши и кролика оценена функциональная роль Na⁺-тока, тока Na⁺/K⁺-насоса и дополнительно Ca²⁺-тока L-типа в формировании трансмембранных ПД клеток водителя ритма (рис. 6.).

Рис. 6. Изменение конфигурации ПД и частоты генерации спонтанных импульсов у клеток, работающих в режиме истинного водителя ритма, СП узла мыши в присутствии гипонатриевого раствора (А) и селективных блокаторов Na⁺–тока (Б, В), тока Na⁺/K⁺–насоса (Г) и медленного Ca²⁺– тока L–типа (Д).

На основании полученных результатов мы полагаем, что у пейсмекерных клеток СП узла мыши входящий Na^+ -ток участвует в формировании фазы быстрой деполяризации и фазы медленной диастолической деполяризации. Вклад Na^+ -тока в фазу 0 составляет 30–35% у клеток типа истинного водителя ритма и 50–55% – у клеток типа скрытого водителя ритма. Участие Na^+ -тока в формирование фазы 4 оценивается нами в ~ 10–15%. Вклад тока Na^+/K^+ -насоса и Ca^{2+} -тока L-типа в частоту генерации ПД клеток СП узла мыши составляет ~14%. Суммарный вклад токов с участием ионов натрия в генерацию автоматизма клеток СП узла мыши приблизительно равен 40%.

Полученные данные свидетельствуют о различиях в эффектах блокаторов ионных каналов у клеток водителя ритма СП узла у мыши и кролика. Установлено, что Na⁺– каналы в СП узле кролика в восемь раз устойчивее к ингибированию лидокаином, чем у клеток водителя ритма СП узла мыши. В тоже время пейсмекерные клетки СП узла кролика продемонстрировали высокую чувствительность к ингибированию тока Na⁺/K⁺– насоса (~ 10 раз) и к ингибированию Ca²⁺–тока L–типа (~ 4 раз), чем было получено на клетках СП узла у мыши.

выводы

1. У клеток истинного и скрытого водителя ритма синусно-предсердного узла мыши тетродотоксин и лидокаин увеличивают длительность пика потенциала действия и диастолической деполяризации и приводят к замедлению максимальной скорости фазы быстрой деполяризации. Эффективная концентрация лидокаина, ингибирующая скорость фазы быстрой деполяризации на 50% у клеток водителя ритма мыши составила ~28 мкМ, что в восемь раз ниже, чем у кролика.

2. При сопоставимой скорости нарастания переднего фронта потенциала действия эффективная концентрация нифедипина, подавляющая скорость нарастания потенциала действия на 50% у клеток истинного водителя ритма мыши составляла 0.2 мкМ, что в два раза выше, чем у кролика.

3. Снижение концентрации ионов натрия в физиологическом растворе приводит к пропорциональному замедлению максимальной скорости деполяризации потенциалов действия в фазу 0 у клеток водителя ритма мыши.

4. Блокатор тока Na⁺/K⁺-насоса уабаин (10 мкМ) вызывает замедление частоты генерации потенциалов действия на 14% у клеток синусно-предсердного узла мыши и полностью подавляет спонтанную электрическую активность клеток синусно-предсердного узла кролика.

5. Ингибиторные эффекты блокаторов Na⁺-каналов и гипонатриевого раствора свидетельствуют о том, что в клетках синусно-предсердного узла мыши с самой медленной скоростью нарастания переднего фронта потенциала действия (3 В/с) присутствует Na⁺-ток, который вместе с Ca²⁺-током L-типа участвует в формировании фазы 0 и фазы диастолической деполяризации. Вклад Na⁺-тока в фазу 0 составляет 30–35%, а в фазу медленной диастолической деполяризации – 10–15%.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в журналах из списка ВАК РФ:

Lebedeva E.A., Golovko V.A. An analysis of lidocaine and hyposodium solution effects on generation of pacemaker action potential in mouse sinoatrial node // In: Proceeding XXX Meeting ISHR, Haifa, Eds. Flugelman M., F. DeLisa, Medimond. 628. 2011. Bologna, P.38-42. (WoS, Scopus)

Лебедева Е.А. Электрофизиологические параметры потенциалов действия клеток типа скрытого водителя ритма сердца кролика и мыши при действии лидокаина // Изв. Коми НЦ УрО РАН. 2013. №3 (15). С. 58-61. (РИНЦ)

Головко В. А., **Лебедева Е. А.** Участие чувствительного к лидокаину и тетродотоксину тока в генерировании фазы быстрой деполяризации потенциалов действия с низкой dV/dtмакс у клеток синоаурикулярного узла мыши // Фізіологічний журн., Киев, Т. 59, №5, 2013, С 31-40. (WoS)

Golovko V, Gonotkov M, **Lebedeva E.** Effects of 4-aminopyridine on action potentials generation in mouse sinoauricular node strips // Physiol Rep. 2015. 3 (7). e12447. doi: 10.14814/phy2.12447. P. 1–8. (WoS, Scopus)

Другие публикации:

Лебедева Е.А. Эффекты внеклеточной концентрации натрия и лидокаина на генерацию пейсмекерной активности синусно-предсердного узла мыши // Матер. докл. Х Всерос. мол. науч. конф. Ин-та физиологии Коми НЦ УрО РАН. Сыктывкар: Изд-во ИФ Коми НЦ УрО РАН. 2011. С. 124-128.

Лебедева Е.А., Головко В.А. Изменения конфигурации потенциалов действия клеток синусно-предсердного узла мыши при действии лидокаина // Физиология кровообращения. Сборник тезисов. М.: МАКС Пресс. 2012. С. 95.

Лебедева Е.А. Генерация потенциалов действия у клеток типа скрытого водителя ритма синусно-предсердного узла кролика и мыши при действии лидокаина // Матер. докл. XI Всерос. мол. науч. конф. Ин-та физиологии Коми НЦ УрО РАН. Сыктывкар: Издво ИФ Коми НЦ УрО РАН. 2012. С. 131-135.

Лебедева Е.А., Артеева Н.В., Головко В.А. Различия в чувствительности к лидокаину натриевых каналов клеток синусно-предсердного узла кролика и мыши // Матер. докл. IV Съезд биофизиков России. Симпозиум I «Физико-химические основы функционирования биополимеров и клеток». Нижний Новгород. 2012. С. 173.

Gonotkov M., **Lebedeva E.** and V. Golovko. May the transient outward current 4aminopyridine sensitive contribute to the "plateau" of the action potential in mouse sinoatrial node? // Proc. Physiol. Soc. V. 28. 2012. P. 25-26. (WoS 2.602). **Lebedeva E.**, Golovko V. Lidocaine and tetrodotoxin are decreased upstroke velocity of the action potentials in cells of mouse sinoauricular node with slowest dV/dtmax // Abst. 37th Inter. Congress of Physiol. Sciences. Birmingham, UK, July 21-26, 2013. P. 475-476.

Лебедева Е.А. Действие блокаторов натриевых каналов на электрическую активность клеток истинного водителя ритма в сердце мыши // Материалы докладов II всероссийской (XVII) молодежной научной конференции «Молодежь и наука на севере». Том I. Физиология человека и животных. Медицина и здравоохранение. Фундаментальные науки – медицине. Сыктывкар, Республика Коми, Россия, 22-26 апреля 2013 г. С. 186-187.

Лебедева Е.А. Эффекты уабаина на генерацию трансмембранных потенциалов действия клеток водителя ритма сердца кролика и мыши // Матер. докл. XI Всерос. мол. науч. конф. Ин-та физиологии Коми НЦ УрО РАН. Сыктывкар: Изд-во ИФ Коми НЦ УрО АН. 2014. С. 82-85.

Лебедева Е.А., Головко В.А. Вклад кальциевого тока в клетках синуснопредсердного узла мыши и кролика имеет видовые особенности // V Съезд биофизиков России. Материалы докладов. Ростов-на-Дону. 2015. Т. 2. С. 306.

Лебедева Е.А., Гонотков М.А., Головко В.А. Вклад ионов натрия в формирование потенциалов действия у клеток синусно-предсердного узла мыши // Физиология кровообращения: VI Всероссийская с международным участием школа–конференция. Москва, 2-5 февраля 2016 г.: Тезисы докладов. М.: МАКС Пресс. 2016. С. 84.

СПИСОК СОКРАЩЕНИЙ

[Na⁺]₀ – внеклеточная концентрация Na⁺

dV/dt_{max} – максимальная скорость нарастания ПД в фазу 0

EC₅₀- концентрация блокатора, при которой параметр снижается на 50%

E_{max} – максимальный диастолический потенциал

V₄ – скорость фазы медленной диастолической деполяризации

АПД – амплитуда ПД

ДПД₂₀, ДПД₅₀, ДПД₉₀ и ДПД₁₀₀ – длительность потенциала действия на уровне 20%, 50%, 90% и 100% реполяризации

ИВР – истинный водитель ритма

МДД – длительность медленной диастолической деполяризации, фаза 4, пейсмекерный потенциал

ОВ – овершут

ПД – потенциал действия

ПП – потенциал порога

СВР – скрытый водитель ритма

СД – амплитуда спонтанной деполяризации

СП узел – синусно-предсердный узел

ТТХ – тетродотоксин

ЧСС – частота генерации ПД